The fundamental interactions between the quarks and gluons that constitute protons and nuclei can be calculated systematically by the physics theory known as lattice quantum chromodynamics (LQCD). These interactions account for 99 percent of the mass in the visible universe, but they can only be simulated with powerful computer systems such as those housed at the U.S. Department of Energy’s (DOE) Argonne Leadership Computing Facility (ALCF).

As part of the effort to move operations to the backend and genericize the code, the developers are constructing a SYCL backend; Intel, likewise, is adding an extension that expands SYCL’s functions with APIs similar to those of CUDA to make porting as easy as possible for users.

As the other two applications, Grid and HotQCD, already had vendor-independent programming interfaces, the work being done to them is backend-intensive.