
© 2017 Codeplay Software Ltd.
1

SYCL-BLASSYCL-BLAS: Leveraging Expression Trees for Linear Algebra

Jose Aliaga (Universitat Jaume I, Castellon, Spain),
Ruyman Reyes, Mehdi Goli (Codeplay Software)

© 2017 Codeplay Software Ltd.
2

About me...
● Phd in Compilers and Parallel Programming

– Created the first Open Source OpenACC implementation
● Background in HPC, programming models and compilers

– Worked in HPC Scientific Code (ScaLAPACK, GROMACs,
CP2K)

● Contributor to SYCL Specification
● Product Lead of ComputeCpp (Codeplay’s SYCL

implementation)
● Coordinating the work on SYCL Parallel STL

© 2017 Codeplay Software Ltd.
3

What is SYCL-BLAS
SYCL-BLAS is an implementation of BLAS functionality using
Expression Trees on SYCL and C++.
Although it offers a BLAS interface, the important part is the
expression trees for the common operations, that can be re-
used for different functionality or to fuse multiple operations
on a single kernel.
SYCL-BLAS is a collaboration between Codeplay and Universitat
Jaume I of Castellon (Spain).

© 2017 Codeplay Software Ltd.
4

Why SYCL-BLAS

BLAS is used in many different
machine learning and scientific
does as the core computational
library. Many libraries are built on
top of BLAS, or use some of its
computational cores (such as
gemm).
BLAS interface is divided into three
levels, vector, matrix-vector and
matrix-matrix operations

SYCL-BLAS offers a C++/SYCL
friendly interface that allows
mapping STL containers or SYCL
Buffers to views, and apply
operations to those views.

Expression trees are created at
compile time to implement the
BLAS interface.

Kernels are built with offline
compiler (no runtime compilation)

© 2017 Codeplay Software Ltd.
5

© 2017 Codeplay Software Ltd.
6

- Generate kernels at runtime via
string composition

- Runtime compilation of kernels,
with caching

- All define vector and matrix classes
- All wrap kernel execution on a host

library call
- Some have a more C or a more C++

interface
- The Higher level ones require

defining host semantics and types
(e.g, a gpu vector)

- Writing these libraries, integrating
them and combining multiple is
challenging

Similar approaches Pure OpenCL
interface

Using custom types
for CPU/GPU

© 2017 Codeplay Software Ltd.
7

SYCL already define all the host
integration interface and
semantics.
Developers can focus on kernel
and performance.
Any SYCL-based library
automatically integrates with
other libraries and with C++.
(almost) No need for custom
backends: SYCL implementation
provides the final mile

The SYCL-BLAS approach

Calling axpy on SYCL BLAS. Only Red boxes are
library specific.

© 2017 Codeplay Software Ltd.
8

Demonstrating C++/SYCL productivity

~80% of SYCL-BLAS code so far has been
implemented by Dr. Aliaga (co-author), during a
research visit to Codeplay Edinburgh, from July to
August 2016 (1.5 Months). Dr. Aliaga has a strong
background in Dense and Sparse Linear Algebra,
Clusters and CUDA, working mainly in Fortran and
C.

He didn’t know SYCL or advanced C++ when he
started in July. He got a crash course on template
metaprogramming and some assistance. Started
SYCL-BLAS from scratch.
There was no public version of ComputeCpp at
the moment. He worked with the internal
development version of the time.
At the end of the visit, SYCL-BLAS had level 1 and
2 functions implemented, together with an initial
gemm implementation.

© 2017 Codeplay Software Ltd.
9

BLAS Level 1

© 2017 Codeplay Software Ltd.
10

Expression Tree
Structure

There are three types of nodes
● Views: Wraps a reference to a

container with some extra
information (e.g. stride)

● Operations: Classes that define
operations involving views or
scalars

● Executors: Evaluates the expression
tree

We use make functions to create the
nodes and enable auto-deduction.

© 2017 Codeplay Software Ltd.
11

Kernel fusion

Nodes from different operations can be
fused together in the same kernel.
E.g: Multiple AXPY operations can be
combined on the same kernel dispatch
if independent.
The Join node fuses multiple nodes into
a single one
Using kernel fusion we reduce the
number of data transfers and the
overhead of the kernel launch.

Xi

* Zi = a * Xi + Yi
Z`i = a` * X`i + Y`i
 Yi

+

Zi

Join

Xi

*

Yi
+

Zi

© 2017 Codeplay Software Ltd.
12If a developer wants to fuse these expression tree..

© 2017 Codeplay Software Ltd.
13… can write the C++ code to fuse it

© 2017 Codeplay Software Ltd.
14

Performance

We obtain speedup over clBLAS
on Intel CPU

© 2017 Codeplay Software Ltd.
15

Performance

But not on the GPU

Possibly due to
missing vector
load/store nodes

© 2017 Codeplay Software Ltd.
16

Using fusion improves performance on all platforms

More fusion-oriented
paper accepted in

ParCo 2017!

© 2017 Codeplay Software Ltd.
17

Status and Future work

How do we use SYCLBLAS:

● Ideas and experimental
approaches are tested/designed in
SYCL-BLAS, then ported to other
frameworks (e.g, Eigen).

● Providing feedback to the
committee and to the
ComputeCpp implementation, e.g:
missing vload/vstore from
specification!

● Provide feedback to our Eigen/TF
work

Status

● BLAS LVL1 and LVL2 implemented.
GEMM from LVL 3 prototype
implementation available.

● Currently analyzing performance of
LVL1, identifying performance
bottlenecks (e.g, missing vload/vstore
functions).

● Working on a higher-level DSL using
operator overloading to simplify re-
using nodes and express kernel fusion.

● Planning to use multi-stage
programming

© 2017 Codeplay Software Ltd.
18

Help Wanted!

https://github.com/codeplaysoftware/sycl-blas

Interns and research visitors coming
back to Edinburgh over the summer

https://github.com/codeplaysoftware/sycl-blas

© 2017 Codeplay Software Ltd.
19

@codeplaysoft codeplay.com

W
e’re

Hiri
ng!

co
deplay

.co
m

/c
are

ers/

info@codeplay.com

Thanks for your attention

	Slide 1
	Slide 2
	Slide 3
	Why SYCL-BLAS
	Slide 5
	Similar approaches
	The SYCL-BLAS approach
	Demonstrating C++/SYCL productivity
	BLAS Level 1
	Expression Tree Structure
	Kernel fusion
	Slide 12
	Slide 13
	Performance
	Performance
	Using fusion improves performance on all platforms
	Status and Future work
	Help Wanted!
	Thanks for your attention

