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MOTIVATION FOR RETARGETABLE INFRASTRUCTURE

• “We haven’t agreed on a user-level interface for tasking”

• It’s unlikely that we will anytime soon.  But we can agree on infrastructure.

• “We’re done with science experiments and want something we can use”

• Gather usage models and requirements  architect a durable, robust solution

• “We don’t want another academic endeavor”

• Create something driven and supported by vendors

Build it right, for lasting impact
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WHAT’S IN IT FOR THE COMMUNITY?

• App developers

• Common SW architecture across multiple targets, with multiple data layouts

• Runtime developers

• Better performance and robustness, less effort

• Tasking runtimes and language runtimes that don’t necessarily use tasking

• Vendors

• Expose HW features to a larger market, i.e. SW that spans multiple targets

Seeking a win-win-win
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WHERE DO WE START?

• In order to make life easier for the largest set of people, start at the bottom

• Extremely performant APIs that span targets, plus an easier-to-use set of APIs

• Strive for inclusiveness and extensibility

• Progress from low-level plumbing to runtime building blocks

• Building blocks or anything higher are useless until you have underlying plumbing layer

• Foster collaboration once we have something to work off of

• Make it easy to create new or improved user interfaces

• But don’t start by convincing anything to quit using their and use a new user interface

Bottom up
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WHAT WOULD IT NEED FOR BROAD ADOPTION?

• Tailor scope to cover what’s in common; keep where people innovate out of scope

• Has to meet all provisioning constraints – see list below

• Has to be performant and robust and extensible – see design below

• Has to be the easiest way to get what people want – incremental, meeting needs

• Has to be driven by vendors, who are incentivized to be successful

• Interest from AMD, ARM, Cray, IBM, Intel, NVIDIA

• Hosted by Wilf Pinfold, Modelado.org, a neutral party funded by vendors and others

Top down and bottom up, like a hi-hat cymbal
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IMPLEMENTATION LAYER INTEREST

• Argobots: Halim Amer, ANL

• Qthreads, NoRMa: Stephen Olivier, Sandia

• UCX/UCS: Pasha Sharmis, ARM (remote)

• SYCL/ComputeCPP: Michael Wong, Codeplay, Khronos, HSA (remote)

Some part of each institution has expressed technical interest, 

not necessarily business commitment.
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LANGUAGE OR TASKING FRAMEWORKS

• C++ (CodePlay, IBM) Michael Wong

• Charm++ (UIUC) Ronak Buch, 
(Charmworks) Phil Miller

• Darma (Sandia) Janine Bennett

• Exa-Tensor (ORNL) Wayne Joubert

• Fortran (IBM)

• Gridtools (CSCS, Titech) Mauro Bianco

• HAGGLE (PNNL/HIVE) Antonino Tomeo

• HPX (CSCS)

• Kokkos, Task-DAG (SNL) Carter Edwards

• Legion (Stanford/NV) Mike Bauer

• OmpSs (BSC) Jesus Labarta

• Realm (Stanford/NV) Sean Treichler

• OCR (Intel, Rice, GA Tech) Vincent Cave

• PaRSEC (UTK) George Bosilca

• Raja (LLNL) Rich Hornung

• Rambutan, UPC++ (LBL) Cy Chan

• R-Stream (Reservoir Labs) Rich Lethin

• SyCL (CodePlay) Michael Wong

• SWIFT (Durham) Matthieu Schaller

• TensorRT (NVIDIA) Dilip Sequeira

• VMD (UIUC) John Stone

Some part of each institution has expressed technical interest, 

not necessarily business commitment.

Bold = had material for Mini-Summit
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WHAT IS HiHAT?

Community-wide requirements gathering effort

• Leads to solid architecture that’s durable, extensible, robust

Architect user layer and common layer API and implementation

Implementation beneath user and common layers

• Vendor-maintained and user-supplemented 

Integrate with OSS project: pluggable, conformant building blocks

• Built on user and common layers

• Language and tasking runtimes are built out of these
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HiHAT CLIENTS

• HiHAT’s primary clients are existing language and tasking runtimes (e.g. C++, Kokkos)

• Already have an interface to 1 or more targets, want a better interface/implementation

• HiHAT’s secondary clients are runtimes that are being designed (e.g. HIVE/HAGGLE)

• Open to influencing their design to be amenable to integration with/building on HiHAT

• HiHAT provides a target-neutral interface, used whole or in part by clients

• Identify what’s of greatest value, e.g. for future proofing, ease, robustness

• Incrementally adopt those parts of HiHAT, and build up and out from there

• HiHAT does not have a near-term goal of providing a complete user-facing runtime

Start incrementally, build from there
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HiHAT’S OSS BUILDING BLOCKS

• The HiHAT interfaces will define types and a machine model

• This HiHAT definition defines an architecture to which clients built on it conform

• Clients sharing a need for common functionality contribute/use building blocks

• This would be an open source project

• Examples: schedulers, cost models, visualization, dependence analysis, transformation

• Suppose 4 orgs have needs in common; each can contribute a couple, consume others

• Contributors can share tests (unit, functional, longevity)

• Consumers can customize and contribute back, beef up testing, etc.

Accelerating communal progress
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HiHAT’S IMPLEMENTATION LAYER

• HiHAT enables vendors/implementation providers to plug in functionality from below

• Functionality behind the HiHAT APIs

• Vendors may have the strongest incentive to provide access to their platform features

• Others may offer alternate/improvements implementations

Vendor-driven performance and completeness
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STATIC OR DYNAMIC

• Commonalities between static and dynamic

• Same actions: cost models, binding, ordering, allocation, data copies

• Either can be greedy, look at a limited scope, or buffer to maximize the scope

• Similar principles, slightly different approach

• Static vs. dynamic: make decisions, either record them for later or execute immediately

• The same (library) primitives are applicable to both

• In order to be applicable to dynamic runtimes, can’t be only a compiler

• But library interfaces need to be vetted to address compiler effectiveness and efficiency

• Inter-mix with compilation

Both need a common infrastructure
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VALUE

• Common interface to vendor-specific features

• Modular design, separation of concerns

• What’s above user/common layer can use target-agnostic heuristics on target-specific parameters

• Future proofing

• Retargetable across vendors, implementations, generations

• Underlying implementations can chase changes and improvements

• Performance and robustness

• Vendors are incentivized to provide 1st-class support; others can supplement

Providing the easiest path toward what you already want
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STATUS
• Gather

• Usage models, applications, user requirements – modestly-broad participation, need more

• Architect

• Design principles – good progress, much more to come; need more concrete requirements

• Implement

• Implementation plan – POC this summer, anticipating partial implementation end of 2017

• Integrate

• Proof of concept  early adopters  broaden

Gradual start, but on firm footing

Opt Timing 2016 |                 2017                  |              2018

Gather Community input   Community review    Community feedback

Architect Design principles  API proposal   Refined API     Updated API

Implement Proof of concept      Initial subset            More complete 

Integrate Proof of concept        First/partial clients     Broader, more complete
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MOMENTUM
Building interest, firming up investment

• Modelado.org – neutral zone, posting of usages, requirements, apps; monthly mtgs

• Active bottom-up discussions with vendors  initial POC with glue code

• Existence proofs and past learning: hetero streams, REALM, ~OCR, CodePlay

• ECP – ATDM funding, PathForward2 SW, CORAL/APEX/ECP app owners from ORNL, 
ANL, LBL, LANL

• PASC – interest from Platform for Advanced Scientific Computing, Switzerland

• Workshop on Exascale SW Technologies (WEST) – panelist, Feb. 22

• Workshop at GPU Tech Conference – May 9 am, share progress, deepen investment

• Talk @ IWOCL workshop, Distributed and Hetero Programming for C/C++17, May 16 

• Performance portability workshop – August 21
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SCOPE OF FUNCTIONALITY

• Cover key platform-specific actions and services

• Data movement – target-optimized copies, DMA, networking

• Data management – support many kinds and layers of memory, specialized pools

• Coordination – completion events, locks, queues, collectives, iterative patterns

• Compute – target-optimized tasks, including remote invocation

• Enumeration – kinds and number of resources (compute, memory), topologies

• Feedback – profiling, load

• Tools – tracing, callbacks, pausing, … {debugging}
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TABULATED RESULTS FROM MINI-SUMMIT
Strong interest, modestly amenable; focus on data first

Type of functionality Level of 

interest 

Amenability 

to 

refactoring 

H M L H M L

Data movement – target-optimized copies, DMA, networking 14 0 1 7 3 1

Data management – kinds and layers of memory, specialized pools 10 3 2 7 2 2

Coordination – completion events, locks, queues, collectives, iteration 8 7 0 5 4 1

Compute – local or remote invocation 7 1 4 4 4 3

Enumeration – kinds/# of resources, topologies 11 3 1 4 3 2

Feedback – profiling, utilization 6 5 2 4 5 1

Tools – tracing, callbacks, pausing, debugging 3 10 2 2 5 2
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CALL TO ACTION

• Join the community in providing input

• Provisioning constraints, usage models, user stories @ hihat.modelado.org

• Leverage real-world experience to influence API design

• Consider reviewing, contributing code

• Implementation layer for new targets

• Building blocks

• Detailed compare/contrast between HiHAT and OpenCL

Join the momentum, keep us grounded in reality


