
Performance Portability Evaluation:
Non-negative Matrix Factorization as
a case study
Youssef Faqir-Rhazoui, Carlos García and Francisco Tirado
Distributed and Heterogeneous Programming in C++, August 2022

1

Agenda

● Introduction

● What is the non-negative matrix
factorization algorithm?

● Proposed implementations

● Experimental conditions

● Experimental results

● Conclusion

2

Introduction

● The NMF algorithm was first proposed by Paataro and Tapper in 1994.1

● The NMF is used for dimensionality reduction in fields such as biology or image
processing among others.

● Libraries such as scikit-learn include it, but its use is constrained to only CPUs.
Pytorch has GPU support but is restricted to only Nvidia’s.

● This work develops a multi-device (CPU and GPU) version of the NMF for SYCL,
OpenMP and CUDA (only Nvidia GPUs) and compares their performance.

31. Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994

Non-negative Matrix Factorization

● The NMF decomposition can be seen as:

● Where: , is the original matrix with ‘m’ variables and ‘n’ objects.

 , is the reduced ‘k’ vector or factor.

 , contains the coefficients of linear combinations of the
. basis vectors.

4

How to decompose the V matrix?

1. Randomly initialize W and H matrices.

2. Repeatedly modifies W and H until their product approximates to V.

3. Such modifications are derived from minimizing a cost function (Euclidean
distance).

5

Pseudocode

6

● Matrix multiplication (lines 5 and 11)

● Division (line 6)

● Multi-variable reduction (line 9)

● Dot product (line 12)

BLAS Baseline Implementation

● C++ implementation to compare the
base performance on CPU.

● Only the matrix multiplication was
optimized with the MKL library.

● Intel oneAPI were used for the compiler
(icpx) and for the library oneMKL.

7

SYCL Implementation

● Since oneMKL is used for the matrix multiplication, the other kernels were
implemented with the ‘nd-range’ scheme.

● While oneAPI suit is used for CPU and Intel GPUs, its lack of compatibility
with Nvidia GPUs makes it impossible to keep with the same set-up.

● To solve that, we used the open version of the oneAPI’s compiler 2 and
oneMKL library.3

8

2. https://github.com/intel/llvm
3. https://github.com/oneapi-src/oneMKL

https://github.com/intel/llvm
https://github.com/oneapi-src/oneMKL

OpenMP Implementation

● The GPU implementation uses the pragmas ‘target’, ‘teams_distribute’,
‘num_teams’ and ‘thread_limit’ to spread data over GPU threads.

● Three OpenMP implementations were developed. Since OpenMP and
OpenMP offload differs from the notation, the CPU and GPU pragmas are
incompatible.

● The other version comes from the fact that oneAPI is only compatible with
Intel GPUs. So, to run OpenMP on Nvidia GPUs we need the CUDA HPC SDK.

9

Work Environment

10

Data Description

● Lung (16,063 × 280): Contains 16,063 genes by Affymetrix Genechips of
primary tumors tissues and poorly differentiated adenocarcinomas.

● ExpO (54,675 × 1,973): A set of 1,973 tumor samples obtained by the expO
project.

11

CPU Multithreading

● Tested on i9-10920X with the Lung data set
(16063 × 280).

● Using one thread by physical core increases
the performance by 22% in the case of SYCL,
while it is 16% in OpenMP.

● The issue is that threads compete by
common CPU resources.

12

Buffers vs USM in SYCL

● The Unified Shared Memory (USM) is a
more lightweight model, while the buffer
model is a memory abstraction.

● Important differences from 8% up to 24%
by choosing between USM or buffer
models.

13

CPU results (Lung data set)

● The AMD EPYC achieved a speedup of ≈2.2×
in OpenMP and ≈4.4× in SYCL with respect
to the BLAS base version.

● AMD processors are not optimized for
oneAPI, since Intel does not grant full
compatibility with non-Intel CPUs.

● The i9-10920X shows a speedup of ≈3.1x in
both SYCL and OpenMP.

14

CPU results (ExpO data set)

● For the EPYC, speedups of ≈1.8× in
OpenMP and ≈4× in SYCL, and
newly, the same differences were
found between OpenMP and SYCL.

● The i9-10920X gets a speedup of
≈1.5×, either in SYCL or OpenMP.

15

GPU results (Lung data set)

● The Intel DG1 has a speedup of ≈1.26×
on SYCL over OpenMP.

● Concerning the RTX 3090, we get 0.9s for
CUDA, 2.4s for OpenMP and 1.98s for
SYCL.

● The GEMM kernel takes longer to run on
SYCL and OpenMP due to the overhead of
keeping the cuBLAS context.4

● Both GPUs using OpenMP increases the
time consumption of the division.

164. https://github.com/oneapi-src/oneMKL/issues/106

https://github.com/oneapi-src/oneMKL/issues/106

GPU results (ExpO data set)

● The Intel DG1 has a speedup of ≈1.1× on
SYCL over OpenMP.

● In the RTX 3090, we get 12.2s in CUDA,
13.2s in OpenMP and 13s in SYCL.

● By moving to a larger data set in the RTX
3090, the previously cuBLAS issue
disappear, reducing the difference among
versions to less than 7%.

17

Conclusion

● We evaluate the performance portability of OpenMP, SYCL and CUDA on the NMF
algorithm on different devices (CPU and GPU) from different vendors.

● The experimental results reveal that while CUDA offers the best performance, its
portability is reduced just to NVIDIA GPUs.

● OpenMP requires some code customization depending on the device and even the
compiler. The lack of expression of OpenMP to exploit some GPU advantages makes it
a non-optimal implementation.

● SYCL code was written once and successfully executed on different target devices
without changes. Even though the performance is not the best in all the architectures,
its code portability greatly reduces developing times.

18

Thanks!
Supported by the EU (FEDER), the Spanish MINECO and CM under grants S2018/TCS-4423,

RTI2018-093684-B-I00 and PID2021-126576NB-I00 funded by
MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe"

https://github.com/artecs-group/nmf-dpcpp

19

https://github.com/artecs-group/nmf-dpcpp

