
Enabling SYCL Support for embedded Xilinx FPGAs

DHPCC++ Workshop at EuroPar 2022

23rd August 2022

© 2022 Codeplay Software Ltd.2

C++ platform via the SYCL™
open standard, enabling vision
& machine learning e.g.
TensorFlow™

Enabling AI & HPC
to be Open, Safe &

Accessible to All
Markets

High Performance Compute (HPC)
Automotive ADAS, IoT, Cloud Compute

Smartphones & Tablets
Medical & Industrial

Technologies: Artificial Intelligence
Vision Processing

Machine Learning
Big Data Compute

Company

Leaders in enabling high-performance
software solutions for new AI processing
systems

Enabling the toughest processors with tools
and middleware based on open standards

Established 2002 in Scotland, acquired by
Intel in 2022 and now ~90 employees.

Supported Solutions

The heart of Codeplay's
compute technology enabling
OpenCL™, SPIR-V™, HSA™ and
Vulkan™

And many more!

Partners

An open, cross-industry, SYCL based,
unified, multiarchitecture, multi-
vendor programming model that
delivers a common developer
experience across accelerator
architectures

© 2022 Codeplay Software Ltd.3

• Introduction:
• Why bring SYCL to embedded FPGAs?

• A background on FPGAs.

• About HLS.

• SYCL and FPGAs.

• ComputeCpp FPGA integration.

• FPGA-specific program transformations.

• Conclusions and future work.

Agenda

© 2022 Codeplay Software Ltd.4

• To use FPGAs to accelerate complex modern C++ libraries via
SYCL.
• Especially Machine Learning and Artificial Intelligence, but also Computer

Vision and HPC.

• To enable embedded/automotive/medical/etc platforms with
FPGAs to run or accelerate software they were not able to
support before.

Why bring SYCL to embedded FPGAs?

© 2022 Codeplay Software Ltd.5

• Field Programmable Gate Arrays.

• Matrix of Configurable Logic Blocks (CLB). (Look up tables, Flip
Flops, DSP, BRAM) connected via programmable links.

• Programmed using Hardware Description Languages (HDL),
such as VHDL or Verilog.

FPGAs

© 2022 Codeplay Software Ltd.6

• "Software" programming languages are inherently sequential:
one instruction is executed after the other.

• HDLs describe the structure of a digital circuit. Sequential
behaviour is obtained across clock cycles, often by means of
state machines.

• Learning an HDL is not like learning a new programming
language, it requires a "paradigm shift".

HDL vs Programming Languages

© 2022 Codeplay Software Ltd.7

RTL Verilog C/C++ HLS
module dut(rst, clk, q);
input rst;
input clk;
output q;
reg [7:0] c;
always @ (posedge clk)
begin
if (rst == 1b’1) begin

c <= 8'b00000000;
end
else begin

c <= c + 1;
end
assign q = c;
endmodule

void dut() {
static uint8 c;
c+=1;

}

HDL vs Programming Languages

© 2022 Codeplay Software Ltd.8

• "Transformation of the behavioral description of hardware
into an RTL model".

• Allows to obtain the VHDL/Verilog description of a circuit,
starting from code written in a programming language.

• Tools exist for C, C++, OpenCL-C.

High Level Synthesis

© 2022 Codeplay Software Ltd.9

• triSYCL: Xilinx FPGAs.

• DPC++: Intel FPGAs.

• Both the implementations support OpenCL as a backend.

• Both provide FPGA-specific extensions.

• ComputeCpp: Xilinx (embedded) FPGAs.

• SYCL written for FPGAs can differ quite drastically from SYCL
written for CPUs/GPUs.
• For example no parallel_for, single task + specific extensions).

SYCL + FPGAs

© 2022 Codeplay Software Ltd.10

• Zynq UltraScale+™ MPSoC
ZCU106 Evaluation Kit.

• Arm® Cortex®- A53
processor.

• Targets low-power
embedded applications.

Experimental setup

© 2022 Codeplay Software Ltd.11

• Mostly compiler driver work, use v++ (Xilinx HLS compiler),
feed it SPIR produced by ComputeCpp.

ComputeCpp FPGA integration

© 2022 Codeplay Software Ltd.12

• Kernel naming: the kernel name must be at most 28
characters long without containing underscores; this can
cause issues with heavily templated kernels.

• Enqueue first kernel: data can't be written on the FPGA
device before a kernel gets enqueued; need to enqueue a
"fake kernel" first.

• All kernels linked together: all the kernels from a SYCL
program must appear in the same bitstream file.

Issues/limitations of targeted FPGA platform

Addressed in ComputeCPP

© 2022 Codeplay Software Ltd.13

• Compared SYCL-BLAS GEMM (CPU/GPU specific
implementation) against GEMM from the HPCC_FPGA
benchmark suite (OpenCL kernels that explicitly targets
FPGAs).

• CPU/GPU specific implementation doesn't map very well to
the FPGA, showing a slowdown that ranges from 1.5x to 5x,
growing with the matrix size.

• SYCL-BLAS provides an autotuner, but the kernel linking issue
limits its applicability on the FPGA.

Performance numbers

https://github.com/codeplaysoftware/sycl-blas
https://github.com/pc2/HPCC_FPGA

© 2022 Codeplay Software Ltd.14

Size Slowdown

64 1.6x

128 4.3x

256 5.7x

512 5.7x

1024 5.6x

Performance numbers

0

5

10

15

20

25

30

35

40

45

50

64 128 256 512 1024

T
im

e
 [

m
s]

Matrix Size

HPCC vs FPGA GEMM

HPCC-FPGA SYCL-BLAS

© 2022 Codeplay Software Ltd.15

FPGA-specific program transformations

© 2022 Codeplay Software Ltd.16

• Compiler-side transformation (+ SYCL runtime support) that
allows to enqueue a SYCL parallel_for as a single_task.

• Exposes the computation of the entire parallel_for range (e.g.
NDrange) to the HLS compiler.
• Enables better pipelining and other optimizations.

• Allows us to explore further optimizations.

Single task conversion

© 2022 Codeplay Software Ltd.17

Vanilla Single-task
define spir_kernel void @SimpleVadd(i32 *, i32 , i32*) {

%4 = tail call spir_func i64 @_Z13get_global_idj(i32 0) #2

%5 = getelementptr inbounds i32, i32 addrspace(1)* %1, i64 %4

%6 = load i32, i32 addrspace(1)* %5, align 4, !tbaa !9

%7 = getelementptr inbounds i32, i32 addrspace(1)* %2, i64 %4

%8 = load i32, i32 addrspace(1)* %7, align 4, !tbaa !9

%9 = add nsw i32 %8, %6

%10 = getelementptr inbounds i32, i32 addrspace(1)* %0, i64 %4

store i32 %9, i32 addrspace(1)* %10, align 4, !tbaa !9

ret void

}

define spir_kernel void @SimpleVadd(i32*, i32*, i32*, i64, i64, i64,
i64, i64, i64, i64) {

; … Some phi nodes removed for brevity

24: ; preds = %24, %22

%25 = phi i64 [0, %22], [%33, %24]

%26 = add i64 %19, %25

; … The actual sva computation, no more calls to get_global_id

br i1 %34, label %24, label %35

35: ; preds = %24

%36 = add nuw i64 %23, 1

%37 = icmp ult i64 %36, %4

br i1 %37, label %22, label %38

; … increases the other loop counters

}

Example

© 2022 Codeplay Software Ltd.18

• Having the single task conversion performed by the compiler
allows to integrate it with other compiler passes.

• Calls to OpenCL barrier can be handled by performing
opportune transformations.

• This is necessary to correctly convert to single task SYCL
nd_range kernels.

Barrier removal

© 2022 Codeplay Software Ltd.19

• Program transformation that, given a scalar kernel, creates a
new one s.t. one execution of the new kernel corresponds to
N executions of the original one (N is the vector width).
• Executes N work items in one thread instead of N threads!

• Employs vector instructions to improve performances.

• Implementation: ComputeAorta's vecz.

Whole Function Vectorization

© 2022 Codeplay Software Ltd.20

Original kernel Vectorized kernel
define void @SimpleVadd(i32*, i32*, i32*) {

%5 = call i64 @_Z13get_global_idj(i32 0)

%6 = getelementptr inbounds i32, i32* %1, i64
%5

%7 = load i32, i32* %6, align 4

%8 = getelementptr inbounds i32, i32* %2, i64
%5

%9 = load i32, i32* %8, align 4

%10 = add nsw i32 %9, %7

%11 = getelementptr inbounds i32, i32* %0,
i64 %5

store i32 %10, i32* %11, align 4

ret void

}

define void @SimpleVadd_v16(i32*, i32*, i32*) {

%5 = call i64 @_Z13get_global_idj(i32 0)

%6 = getelementptr inbounds i32, i32* %1, i64 %5

%7 = bitcast i32* %6 to <16 x i32>*

%8 = load <16 x i32>, <16 x i32>* %7, align 4

%9 = getelementptr inbounds i32, i32* %2, i64 %5

%10 = bitcast i32* %9 to <16 x i32>*

%11 = load <16 x i32>, <16 x i32>* %10, align 4

%12 = add nsw <16 x i32> %11, %8

%13 = getelementptr inbounds i32, i32* %0, i64 %5

%14 = bitcast i32* %13 to <16 x i32>*

store <16 x i32> %12, <16 x i32>* %14, align 4

ret void

}

Whole Function Vectorization - Example

© 2022 Codeplay Software Ltd.21

Vectorized kernel Vectorized + single task
define void @SimpleVadd_v16(i32*, i32*, i32*) {

%5 = call i64 @_Z13get_global_idj(i32 0)

%6 = getelementptr inbounds i32, i32* %1, i64 %5

%7 = bitcast i32* %6 to <16 x i32>*

%8 = load <16 x i32>, <16 x i32>* %7, align 4

%9 = getelementptr inbounds i32, i32* %2, i64 %5

%10 = bitcast i32* %9 to <16 x i32>*

%11 = load <16 x i32>, <16 x i32>* %10, align 4

%12 = add nsw <16 x i32> %11, %8

%13 = getelementptr inbounds i32, i32* %0, i64 %5

%14 = bitcast i32* %13 to <16 x i32>*

store <16 x i32> %12, <16 x i32>* %14, align 4

ret void

}

define spir_kernel void @SimpleVadd(i32*, i32*, i32*, i64, i64, i64,
i64, i64, i64, i64) {

; … Some phi nodes removed for brevity

24: ; preds = %24, %22

%25 = phi i64 [0, %22], [%33, %24]

%26 = add i64 %19, %25

; … The vectorized vector add, no more calls to get_global_id

br i1 %34, label %24, label %35

35: ; preds = %24

%36 = add nuw i64 %23, 16

%37 = icmp ult i64 %36, %4

br i1 %37, label %22, label %38

; … increases the other loop counters + eventually peel

}

WFV + single task

© 2022 Codeplay Software Ltd.22

• Vecz/barrier pass emit some instructions that are not
supported by SPIRV.
• Variable length LLVM alloca are not supported -> Use a compile-time fixed

size.

• Vector of pointers are not supported -> Unpack them into scalars.

• LLVM vector intrinsics (masked scatter/gather etc) are
flattened, leading to serial memory accesses.

WFV: Some caveats

© 2022 Codeplay Software Ltd.23

• No performance difference by just performing single task
conversion, even when unrolling the loops.

• 5x speedup on matrix multiply sample from ComputeCpp-SDK
with vectorization.

• Memory bandwidth limits benefit from vectorization.

• v++ -c crashes on the vectorized version of the SYCL-BLAS
GEMM kernels. The IR is valid SPIR.

Performance numbers

© 2022 Codeplay Software Ltd.24

Size V32 vs
none

V4 vs
none

128 5.27 3.55

256 5.43 3.67

512 5.55 3.73

1024 5.55 3.72

Performance numbers – matrix multiply

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

128 256 512 1024

Ti
m

e
[m

s]

Matrix Size

Matrix multiply sample

No WFV With WFV - 4 With WFV - 32

© 2022 Codeplay Software Ltd.25

Performances are basically

Unaffected by WFV in a

memory-bound application.

Performance numbers – vector addition

0

0.05

0.1

0.15

0.2

0.25

no WFV 4 8 32

Ti
m

e
[m

s]

WFV width

Vector addition

© 2022 Codeplay Software Ltd.26

• Enabled FPGA support in ComputeCpp, specifically targeting
embedded Xilinx boards. Successfully ran complex BLAS
kernels.

• Single task conversion and vectorization show promising
results on simple kernels, but the current HLS tool fails to
synthetize more complex kernels.

Conclusions

© 2022 Codeplay Software Ltd.27

• Enabling autotuning (requires either XRT to lift the restriction
of requiring all kernels in the same bitstream file, or work
arounds to enable kernels to be in separate bitstreams).

• Implement some FPGA-specific SYCL extensions in
ComputeCpp (e.g. array partitioning).

• Automated kernel replication.

• MLIR/CIRCT.

Future work

© 2022 Codeplay Software Ltd.28

• Multiple enqueues of the same kernel, each enqueued kernel
operates on a subset of the nd-range.

Automatic kernel replication

Kernel

ND-Range

Kernel Kernel'

FPGA FPGA

© 2022 Codeplay Software Ltd.29

• CIRCT is an LLVM incubator project that aims to apply MLIR
and LLVM in the hardware design domain.

• circt-hls is a sub-project within CIRCT that specifically targets
HLS. Uses MLIR standard dialects, outputs SystemVerilog.

• Still in a very experimental state, and ComputeCpp doesn't
include MLIR in its pipeline, but we are keeping an eye on the
project.

MLIR/CIRCT

https://circt.llvm.org/
https://github.com/circt-hls/circt-hls

/codeplaysoft@codeplaysoft codeplay.com

Thank You!

