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Summary of DOE Activities - ECP

• Exascale Computing Projects (ECP) applications and software using SYCL
⏤https://www.exascaleproject.org
⏤Kokkos – Portable GPU programming model

§ SYCL backend
⏤RAJA – Portable GPU programming model

§ SYCL backend
⏤AMReX – Portable programming model for block structured AMR

§ SYCL backend
⏤NWChemEx – will support a broad range of chemistry research important to DOE BER and DOE Basic Energy 

Sciences on computing systems that range from terascale workstations and petascale servers to exascale
computers.

§ SYCL used in various components
⏤NekRS - a GPU-oriented thermal-fluids simulation code based on the spectral element method (SEM) 

§ OCCA portability layer has SYCL backend

https://www.exascaleproject.org/
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Summary of DOE Activities - Facilities

• Argonne Leadership Computing Facility (ALCF)
⏤https://alcf.anl.gov
⏤Preparing Aurora Exascale computer for launch (Intel PVC)

§ SYCL is our primary programming model for direct GPU programming
⏤ Intel DPC++ is our primary SYCL implementation
⏤Have tested ComputeCPP and hipSYCL
⏤Active in Khronos Specification process

• Oakridge Leadership Computing Facility (OLCF)
⏤https://olcf.ornl.gov
⏤Collaboration on creating DPC++ plugin implementation for AMD
⏤Potential support SYCL as alternate programming model for Frontier (AMD MI-250X)

• National Energy Research Scientific Computing Center (NERSC)
⏤https://nersc.gov
⏤Collaboration on enhancing initial Nvidia DPC++ implementation

§ Targeting support for Perlmutter (Nvidia A100)
⏤Support for SYCL as alternate programming model on Perlmutter

https://alcf.anl.gov/
https://olcf.ornl.gov/
https://nersc.gov/
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DOE Funded Work – Nvidia Support

• ALCF joint project with NERSC to develop/enhance PI_CUDA
⏤Led by Brandon Cook (NERSC)
⏤Contracted with Codeplay to execute the work
⏤Support A100 / SM_80 architecture
⏤Optimizations for A100

§ PTX 7.0 builtins
⏤Joint Matrix proposal to support Nvidia Tensor Core

§ Optimize matrix-matrix operations
§ Intel working on support of VNNI/AMX instructions

⏤Device to Device memory transfer
⏤Year of maintenance (currently ongoing)
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DOE Funded Work – AMD Support

• ALCF and OLCF joint project with Codeplay to develop PI_HIP
⏤Led by Kevin Harms and David Bernholdt
⏤Develop a plugin based on HIP
⏤Reuse existing clang support for generating HIP device code
⏤Target MI-50 and MI-100 AMD GPUs
⏤Prototype project has been completed
⏤Develop sufficient support to execute five benchmark applications

§ Approximate 50% completion of plugin interface
§ Some builtins missing
§ Interop missing



Argonne Leadership Computing Facility7

oneAPI

• Intel initiative to create open specifications for software components 
compatible with SYCL

• Creating an ecosystem around the SYCL programming model
• Examples

⏤oneDPL implemented in SYCL and can be built for non-Intel backends
⏤oneMKL has initial support for Nvidia and AMD

§ Utilizes optimized cuBLAS and rocBLAS



Performance
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Performance Evaluation

• Study of five benchmark / miniapps that were focus of work for initial AMD 
support
⏤BabelStream
⏤LULESH
⏤RSbench
⏤SYCLDSlash (implementation of Dslash operator used in QCD codes)
⏤SYCL reduction benchmarks

• Study was done by Codeplay using public hardware available in Argonne’s 
Joint Laboratory for System Evaluation (JLSE)
⏤Nvidia A100
⏤AMD MI-50
⏤AMD MI-100
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BabelStream

Credit Codeplay Software
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LULESH

Credit Codeplay Software
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RSBENCH
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SYCLDSlash
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RAJAPerf – LCALS kernel execution time (lower is better)
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Features
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SYCL Complex

• Complex numbers are widely used in HPC
• Currently, SYCL doesn’t have support for complex number in device code 

within the specification
⏤A DPCPP implementation existed, but only implemented for L0/OpenCL backend

• Argonne and Codeplay implemented a “header only” library which enables  
sycl::complex and associated math function in device code
⏤A PR has been created to merge it into DPCPP
⏤Derivative/port of LLVM complex

Credit
Thomas Applencourt (Argonne)
Brice Videau (Argonne)
Aidan Belton-Schure (Codeplay)
Gordon Brown (Codeplay)



Argonne Leadership Computing Facility17

Example

https://github.com/argonne-lcf/SyclCPLX

#include "sycl_ext_complex.hpp”

sycl::queue Q(sycl::gpu_selector{});
std::complex<double> i00{0.2,0.5}; 
std::complex<double> i01{0.2,0.3}; 
gpu_result = 
sycl::malloc_shared<sycl::ext::cplx::complex<double>>(1,Q);
Q.single_task([=]() { 

//Using implicit cast from std::complex -> 
sycl::ext::cplx::complex    

gpu_result[0] = sycl::ext::cplx::pow<double>(i00, i01);
}

).wait();

https://github.com/argonne-lcf/SyclCPLX


Application Studies
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NWChemEx: Portability of SYCL on ALCF Polaris
Science

l Application: NWChemEx/TAMM, Coupled Cluster Singles, 
Doubles & Triples methods, CCSD(T) = CCSD + (T)

l Code: C++, CUDA, HIP, SYCL
l Libraries: cublas, rocblas, oneMKL

l CCSD energies contribution in CCSD(T) is mostly governed 
by vendor GEMM

l (T) energies contribution forms the bottleneck in 
scaling a  CCSD(T) computations

Portability Performance Highlights

l SYCL performance for Nvidia devices is almost feature 
complete 

l SYCL performance is about 1.38 – 1.47x slower in comparison 
to native CUDA on Nvidia A100

l This is a significant improvement over the past couple of 
months where the performance gap was about 8.5x

l Note: Performance characteristics of CCSD contribution were not included. Portable 
oneMKL (gemm) uses cublas for computations yielding similar performance as cublas 
APIs

1.47
x

1.38
x

Strong scaling – Contribution of timings in seconds for (T) 

kernel on ALCF Polaris, each node with 4 Nvidia A100 40 GB. 

Nodes: 4, 8, 16, 32, 64, 128

sto-3g = 231 basis functions

6-31g  = 424 basis functions 

Credit Abhishek Bagusetty



Argonne Leadership Computing Facility20

NWChemEx: Portability of SYCL on OLCF Crusher

Portability Performance Highlights

l HIP plugin in LLVM is not as feature complete as CUDA plugin
l Though SYCL portability performance on AMD MI-250x GPU is 

almost similar to native HIP performance 

l SYCL portability performance is about 98-99% of native HIP 
on AMD MI-250x

l A significant improvement in merging the gap from 90-93% 
as measured in May 2022

l Timings are shown for the computationally bottle neck 
computation of triples (T) kernel of CCSD(T) calculation

l Note: Unlike CUDA, ROCM and SYCL ecosystem leverages 
LLVM providing better portability with optimizations.

l

l Note: Performance characteristics of CCSD contribution were not included. Portable 
oneMKL (gemm) uses rocblas for computations yielding similar performance with 
SYCL portable libraries for DGEMM Strong scaling – Contribution of timings in seconds for (T) kernel on pre-production OLCF 

Crusher each node with 4 AMD MI-250x (i.e., 6 GCD). Nodes: 4, 8, 16, 32, 64, 128

sto-3g = 231 basis functions

6-31g  = 424 basis functions

*SYCL built with rocm-5.1.0 : Dated Aug 18, 2022
Acknowledgment: Thanks to Codeplay Software Ltd., for providing the necessary SYCL plugins to CUDA and HIP backends, more importantly performance optimizations 

Credit Abhishek Bagusetty
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Status: In-development
Supports MPI, GPU (CUDA, HIP, SYCL)

• SuperLU consists:
(a) hand-written device CUDA/HIP/SYCL kernels
(b) Vendor BLAS: sgemm/dgemm/zgemm

• SYCL backend primary goal was initially for Aurora architecture

• Complete: Portable SYCL backend builds on OLCF Crusher, 
Perlmutter

• In progress: Unit testing, performance benchmarks

NVIDIA AMD Intel 

BLAS cuBLAS rocBLAS oneMKL

Linear 
Solvers

cuSOLVER
in-works 

(rocSOLVER) oneMKL

Random 
Numbers cuRAND rocRAND oneMKL

FFT
in-works 
(cuFFT)

in-works 
(rocFFT)

in-works 
(onemkl::dft)

Open-source, oneMKL Library

SuperLU
Credit Abhishek Bagusetty
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CRK-HACC Results on A100: SYCL, CUDA

• Original CUDA code used as the source for porting 
to SYCL using the Intel DPC++ compatibility tool, 
DPCT, with some manual tuning and rewriting 
(~10%).

• CUDA (11) compiled with nvcc.

• SYCL compiled with public Intel DPC++ compiler 
using CUDA backend. 

• Kernels replayed through a testing harness with data 
taken from a simulation with 256^3 particles (~2GB 
of data on the GPU). 

• Kernels are single-precision (FP32) and largely 
compute-bound with some use of FP32 atomic 
operations. 

• Timing results obtained with CUDA events API and 
SYCL event profiling. 0
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Credit Steve Rangel



Closing



Argonne Leadership Computing Facility24

Conclusion

• SYCL has demonstrated performance portability between Intel, Nvidia and AMD hardware
⏤ Intel results when GPUs are no longer NDA

• Interested in feedback from applications developers on SYCL and Aurora
⏤Contact Kevin Harms (harms@alcf.anl.gov) and Scott Parker (sparker@alcf.anl.gov)

• Interested in SYCL on Frontier
⏤Contact David Bernholdt (bernholdtde@ornl.gov) and Balint Joo (joob@ornl.gov)

• Interested in SYCL on Perlmutter
⏤Contact Brandon Cook (bgcook@lbl.gov) 

• Labs are looking for interested applications that want to explore SYCL on Aurora, Frontier and 
Perlmutter
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