
Bringing Performance Portability
to the Exascale Era with C++ and
SYCL
Distributed and Heterogeneous Programming in C++ (DHPCC++22)

Kevin Harms
Argonne National Laboratory

Overview

Argonne Leadership Computing Facility3

Summary of DOE Activities - ECP

• Exascale Computing Projects (ECP) applications and software using SYCL
⏤https://www.exascaleproject.org
⏤Kokkos – Portable GPU programming model

§ SYCL backend
⏤RAJA – Portable GPU programming model

§ SYCL backend
⏤AMReX – Portable programming model for block structured AMR

§ SYCL backend
⏤NWChemEx – will support a broad range of chemistry research important to DOE BER and DOE Basic Energy

Sciences on computing systems that range from terascale workstations and petascale servers to exascale
computers.

§ SYCL used in various components
⏤NekRS - a GPU-oriented thermal-fluids simulation code based on the spectral element method (SEM)

§ OCCA portability layer has SYCL backend

https://www.exascaleproject.org/

Argonne Leadership Computing Facility4

Summary of DOE Activities - Facilities

• Argonne Leadership Computing Facility (ALCF)
⏤https://alcf.anl.gov
⏤Preparing Aurora Exascale computer for launch (Intel PVC)

§ SYCL is our primary programming model for direct GPU programming
⏤ Intel DPC++ is our primary SYCL implementation
⏤Have tested ComputeCPP and hipSYCL
⏤Active in Khronos Specification process

• Oakridge Leadership Computing Facility (OLCF)
⏤https://olcf.ornl.gov
⏤Collaboration on creating DPC++ plugin implementation for AMD
⏤Potential support SYCL as alternate programming model for Frontier (AMD MI-250X)

• National Energy Research Scientific Computing Center (NERSC)
⏤https://nersc.gov
⏤Collaboration on enhancing initial Nvidia DPC++ implementation

§ Targeting support for Perlmutter (Nvidia A100)
⏤Support for SYCL as alternate programming model on Perlmutter

https://alcf.anl.gov/
https://olcf.ornl.gov/
https://nersc.gov/

Argonne Leadership Computing Facility5

DOE Funded Work – Nvidia Support

• ALCF joint project with NERSC to develop/enhance PI_CUDA
⏤Led by Brandon Cook (NERSC)
⏤Contracted with Codeplay to execute the work
⏤Support A100 / SM_80 architecture
⏤Optimizations for A100

§ PTX 7.0 builtins
⏤Joint Matrix proposal to support Nvidia Tensor Core

§ Optimize matrix-matrix operations
§ Intel working on support of VNNI/AMX instructions

⏤Device to Device memory transfer
⏤Year of maintenance (currently ongoing)

Argonne Leadership Computing Facility6

DOE Funded Work – AMD Support

• ALCF and OLCF joint project with Codeplay to develop PI_HIP
⏤Led by Kevin Harms and David Bernholdt
⏤Develop a plugin based on HIP
⏤Reuse existing clang support for generating HIP device code
⏤Target MI-50 and MI-100 AMD GPUs
⏤Prototype project has been completed
⏤Develop sufficient support to execute five benchmark applications

§ Approximate 50% completion of plugin interface
§ Some builtins missing
§ Interop missing

Argonne Leadership Computing Facility7

oneAPI

• Intel initiative to create open specifications for software components
compatible with SYCL

• Creating an ecosystem around the SYCL programming model
• Examples

⏤oneDPL implemented in SYCL and can be built for non-Intel backends
⏤oneMKL has initial support for Nvidia and AMD

§ Utilizes optimized cuBLAS and rocBLAS

Performance

Argonne Leadership Computing Facility9

Performance Evaluation

• Study of five benchmark / miniapps that were focus of work for initial AMD
support
⏤BabelStream
⏤LULESH
⏤RSbench
⏤SYCLDSlash (implementation of Dslash operator used in QCD codes)
⏤SYCL reduction benchmarks

• Study was done by Codeplay using public hardware available in Argonne’s
Joint Laboratory for System Evaluation (JLSE)
⏤Nvidia A100
⏤AMD MI-50
⏤AMD MI-100

Argonne Leadership Computing Facility10

BabelStream

Credit Codeplay Software

Argonne Leadership Computing Facility11

LULESH

Credit Codeplay Software

Argonne Leadership Computing Facility12

RSBENCH

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

cuda sycl-a100 hip sycl-mi100

Lo
ok
up
s/
Se
c

RSBench Performance

Credit Codeplay Software

Argonne Leadership Computing Facility13

SYCLDSlash

0

200

400

600

800

1000

1200

1400

cuda sycl-a100 hip sycl-mi100

G
F/
Se
c

DSlash Performance

Credit Codeplay Software

Argonne Leadership Computing Facility14

RAJAPerf – LCALS kernel execution time (lower is better)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Lc
als
_D
IF
F_
PR
ED
IC
T

Lc
als
_E
OS

Lc
als
_F
IR
ST
_D
IF
F

Lc
als
_G
EN
_L
IN
_R
EC
UR

Lc
als
_H
YD
RO
_1
D

Lc
als
_H
YD
RO
_2
D

Lc
als
_I
NT
_P
RE
DI
CT

Lc
als
_P
LA
NC
KI
AN

Lc
als
_T
RI
DI
AG
_E
LIM

 Base_SYCL RAJA_SYCL Base_CUDA RAJA_CUDA

Credit Brian Homerding

Features

Argonne Leadership Computing Facility16

SYCL Complex

• Complex numbers are widely used in HPC
• Currently, SYCL doesn’t have support for complex number in device code

within the specification
⏤A DPCPP implementation existed, but only implemented for L0/OpenCL backend

• Argonne and Codeplay implemented a “header only” library which enables
sycl::complex and associated math function in device code
⏤A PR has been created to merge it into DPCPP
⏤Derivative/port of LLVM complex

Credit
Thomas Applencourt (Argonne)
Brice Videau (Argonne)
Aidan Belton-Schure (Codeplay)
Gordon Brown (Codeplay)

Argonne Leadership Computing Facility17

Example

https://github.com/argonne-lcf/SyclCPLX

#include "sycl_ext_complex.hpp”

sycl::queue Q(sycl::gpu_selector{});
std::complex<double> i00{0.2,0.5};
std::complex<double> i01{0.2,0.3};
gpu_result =
sycl::malloc_shared<sycl::ext::cplx::complex<double>>(1,Q);
Q.single_task([=]() {

//Using implicit cast from std::complex ->
sycl::ext::cplx::complex

gpu_result[0] = sycl::ext::cplx::pow<double>(i00, i01);
}

).wait();

https://github.com/argonne-lcf/SyclCPLX

Application Studies

Argonne Leadership Computing Facility19

NWChemEx: Portability of SYCL on ALCF Polaris
Science

l Application: NWChemEx/TAMM, Coupled Cluster Singles,
Doubles & Triples methods, CCSD(T) = CCSD + (T)

l Code: C++, CUDA, HIP, SYCL
l Libraries: cublas, rocblas, oneMKL

l CCSD energies contribution in CCSD(T) is mostly governed
by vendor GEMM

l (T) energies contribution forms the bottleneck in
scaling a CCSD(T) computations

Portability Performance Highlights

l SYCL performance for Nvidia devices is almost feature
complete

l SYCL performance is about 1.38 – 1.47x slower in comparison
to native CUDA on Nvidia A100

l This is a significant improvement over the past couple of
months where the performance gap was about 8.5x

l Note: Performance characteristics of CCSD contribution were not included. Portable
oneMKL (gemm) uses cublas for computations yielding similar performance as cublas
APIs

1.47
x

1.38
x

Strong scaling – Contribution of timings in seconds for (T)

kernel on ALCF Polaris, each node with 4 Nvidia A100 40 GB.

Nodes: 4, 8, 16, 32, 64, 128

sto-3g = 231 basis functions

6-31g = 424 basis functions

Credit Abhishek Bagusetty

Argonne Leadership Computing Facility20

NWChemEx: Portability of SYCL on OLCF Crusher

Portability Performance Highlights

l HIP plugin in LLVM is not as feature complete as CUDA plugin
l Though SYCL portability performance on AMD MI-250x GPU is

almost similar to native HIP performance

l SYCL portability performance is about 98-99% of native HIP
on AMD MI-250x

l A significant improvement in merging the gap from 90-93%
as measured in May 2022

l Timings are shown for the computationally bottle neck
computation of triples (T) kernel of CCSD(T) calculation

l Note: Unlike CUDA, ROCM and SYCL ecosystem leverages
LLVM providing better portability with optimizations.

l

l Note: Performance characteristics of CCSD contribution were not included. Portable
oneMKL (gemm) uses rocblas for computations yielding similar performance with
SYCL portable libraries for DGEMM Strong scaling – Contribution of timings in seconds for (T) kernel on pre-production OLCF

Crusher each node with 4 AMD MI-250x (i.e., 6 GCD). Nodes: 4, 8, 16, 32, 64, 128

sto-3g = 231 basis functions

6-31g = 424 basis functions

*SYCL built with rocm-5.1.0 : Dated Aug 18, 2022
Acknowledgment: Thanks to Codeplay Software Ltd., for providing the necessary SYCL plugins to CUDA and HIP backends, more importantly performance optimizations

Credit Abhishek Bagusetty

Argonne Leadership Computing Facility21

Status: In-development
Supports MPI, GPU (CUDA, HIP, SYCL)

• SuperLU consists:
(a) hand-written device CUDA/HIP/SYCL kernels
(b) Vendor BLAS: sgemm/dgemm/zgemm

• SYCL backend primary goal was initially for Aurora architecture

• Complete: Portable SYCL backend builds on OLCF Crusher,
Perlmutter

• In progress: Unit testing, performance benchmarks

NVIDIA AMD Intel

BLAS cuBLAS rocBLAS oneMKL

Linear
Solvers

cuSOLVER
in-works

(rocSOLVER) oneMKL

Random
Numbers cuRAND rocRAND oneMKL

FFT
in-works
(cuFFT)

in-works
(rocFFT)

in-works
(onemkl::dft)

Open-source, oneMKL Library

SuperLU
Credit Abhishek Bagusetty

Argonne Leadership Computing Facility22

CRK-HACC Results on A100: SYCL, CUDA

• Original CUDA code used as the source for porting
to SYCL using the Intel DPC++ compatibility tool,
DPCT, with some manual tuning and rewriting
(~10%).

• CUDA (11) compiled with nvcc.

• SYCL compiled with public Intel DPC++ compiler
using CUDA backend.

• Kernels replayed through a testing harness with data
taken from a simulation with 256^3 particles (~2GB
of data on the GPU).

• Kernels are single-precision (FP32) and largely
compute-bound with some use of FP32 atomic
operations.

• Timing results obtained with CUDA events API and
SYCL event profiling. 0

50

100

150

200

250

Acceleration Extras Corrections Geometry Energy

Top 5 Compute-Intensive CRK-HACC Kernels

SYCL CUDA

Credit Steve Rangel

Closing

Argonne Leadership Computing Facility24

Conclusion

• SYCL has demonstrated performance portability between Intel, Nvidia and AMD hardware
⏤ Intel results when GPUs are no longer NDA

• Interested in feedback from applications developers on SYCL and Aurora
⏤Contact Kevin Harms (harms@alcf.anl.gov) and Scott Parker (sparker@alcf.anl.gov)

• Interested in SYCL on Frontier
⏤Contact David Bernholdt (bernholdtde@ornl.gov) and Balint Joo (joob@ornl.gov)

• Interested in SYCL on Perlmutter
⏤Contact Brandon Cook (bgcook@lbl.gov)

• Labs are looking for interested applications that want to explore SYCL on Aurora, Frontier and
Perlmutter

Argonne Leadership Computing Facility25

Acknowledgements

• ALCF – OLCF work (David Bernholdt, Balint Joo)
• NERSC – ALCF work (Brandon Cook)
• SYCL Complex (Thomas Applencourt, Brice Videau, Adian Belton-Schure, Gordon Brown)
• RAJA Perf Suite (Brian Homerding)
• NWChemEx / SuperLU (Abhishek Bagusetty)
• CRK-HACC (Steve Rangel)

• Codeplay Software Ltd. (Gordon Brown et. al.)

• This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357.

• This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

• This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-
AC02-05CH11231

